nD-enerserve Forums
Voltage measurement - Printable Version

+- nD-enerserve Forums (https://forum.enerserve.eu)
+-- Forum: SmartPi (https://forum.enerserve.eu/forumdisplay.php?fid=1)
+--- Forum: SmartPi - English (https://forum.enerserve.eu/forumdisplay.php?fid=2)
+--- Thread: Voltage measurement (/showthread.php?tid=1400)



Voltage measurement - anders@rosentorp.nu - 30.07.2020

Hi all!

When I compare the measured voltages in the SmartPi with the real values (by a voltage meter directly on the SmartPi inputs) I can see some differenses.

THe measured voltages are 231-232 on all phases but the SmartPi says:

[img][/img]


Is there a problem with my SmartPi or what is expected accuracy?

/Anders